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Converse of the Eilers-Horst Theorem 

Anatolij Dvure~enskij l 
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We generalize the theorem of Eilers and Horst, showing that any finite as well 
as any ~r-finite measure on a quantum logic of all closed subspaces of a Hilbert 
space H of dimension ~ 2 is a Gleason one iff the dimension of H is a nonmeasur- 
able cardinal, 

1. I N T R O D U C T I O N  

One o f  the most  impor t an t  examples  o f  qua n tum logic  is a system 
~ ( H )  o f  all  c losed  subspaces  o f  a (not  necessar i ly  sepa rab le )  real  or  complex  
Hi lber t  space  H. A measu re  on ~ ( H )  is a m a p  m : ~ ( H )  -> [0, o0] such that  

(1) m(0) = 0; (2)m(On~__l Mn) = ~n~l  m ( M n )  whenever  M~ _1_ Mm for n r m. 
The  famous  theo rem of  G l e a s o n  (1957) says that  any  finite measure  m on 
a sepa rab le  Hi lbe r t  space  H, d im H ~ 2, is in a one- to -one  c o r r e s p o n d e n c e  
with a pos i t ive  Hermi t i an  o p e r a t o r  T on H o f  finite t race via 

m ( M ) = t r ( T p M ) ,  M e ~ ( H )  (1) 

where  pM is the o r thop ro j ec to r  o f  H onto  M. 
Eilers and  Hors t  (1975) p roved  that  the a s sumpt ion  o f  separab i l i ty  is 

superf luous  when the d imens ion  o f  the Hi lbe r t  space  is n o n m e a s u r a b l e  
ca rd ina l  [see also Dr isch  (1979)]. Recal l  that ,  accord ing  to U lam (1930), 
the ca rd ina l  I is n o n m e a s u r a b l e  if  there  is no p robab i l i t y  measure  v on the 
p o w e r  set 2 A o f  a set A whose  ca rd ina l  is I such tha t  v({a}) = 0 for  any  a e A. 

In the p resen t  note  we give a new charac te r i za t ion  o f  n o n m e a s u r a b l e  
card ina ls  via G l e a s o n  measures .  

2. E I L E R S - H O R S T  T H E O R E M  

Let n be a cardinal .  We say tha t  a measure  m is (1) n-finite i f  there  is 
a system {M~: t ~ T} o f  mu tua l ly  o r thogona l  subspaces  o f  H such that  
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H = @,~ r Mr, card T = n, and m (M,) < m for any t c T; (2) or-finite if n = Xo; 
(3) totally additive if for any system of  mutal ly or thogonal  subspaces,  
{Na: a ~ A}, m(@a~A Na)= ~,~A m(Na) ;  (4) a finite Gleason measure if it 
is expressible via (1). 

Theorem 1 (Eilers and Horst).  Any finite measure m on ~ ( H ) ,  dim H # 
2, is a finite Gleason measure iff the dimension of  H is a nonmeasurable  
cardinal. 

Proof Assume that any finite measure on ~s is expressible via (1). 
We claim to show that the dimension of  H is a nonmeasurable  cardinal.  
Suppose the converse. Let {e,: t E T} be an or thonormal  basis in H. Choose  
a probabil i ty measure v on 27` vanishing at any one-point  subset o f  T. 

A map m on ~ ( H )  defined by 

m(M) = Ir IIPMe' I1= du(t), M ~ s (2) 

is a finite measure on ~ ( H )  with re(H)= 1 and m ( P ~ , ) = 0  for every t 6  T, 
where by Py we mean an one-dimensional  subspace of  H spanned over a 
nonzero vector f c  H. 

Maeda  (1980) proved that any finite measure on Y ( H )  o f  an arbitrary 
Hilbert space H, dim H # 2, is expressible via (1) iff it is totally additive. 
Hence,  a measure m defined by (2) is totally additive. Consequent ly ,  

1 = re(H) = m(@t~r Pc,)=L,cr rn(Pe,) = 0  

where is a contradiction.  Therefore,  the d imension of  H is a nonmeasurable  
cardinal. 

The converse implicat ion has been proved by Eilers and Horst  (1975) 
[see also Drisch (1979)]. �9 

In the following result we generalize Theorem 1 to or-finite measures 
attaining infinite values. For  this reason we need further notations.  Let t 
be a symmetric  bilinear form with a dense domain  D(t), that  is: (1) D(t) 
is a linear submanifold;  (2) t: D(t)• D( t )+ C (C is the field o f  scalars) 
such that t is linear in the first argument  and antilinear in the second one; 
(3) t ( a x , ~ y ) = ~ t ( x , y )  for all x , y ~ D ( t )  and all ~ , / 3 c  C;  (4) t (x ,y)= 
t(y,x) for all x , y~D( t ) .  Let M~5~(H) and let M c  D(t). Then by t om  
we mean a symmetric bil inear form defined by toM(x, y)= t(PMx, pMy), 
x, y~H.  I f  toM is induced by a trace opera tor  T, such that toM(x ,y )= 
( Tx, y), x, y ~ H, then we say t o M c T r ( H )  and we put tr t o M = tr T, where 
T r ( H )  is the set o f  all trace operators in H. A bilinear form t is positive if 
t(x,x)>~O for any x c D( t). 

Lugovaja  and Sherstnev (1980) proved that for any o--finite measure 
m on ~ ( H ) ,  m(H) = ~ ,  o f  a Hilbert space H with dim H = No, there exists 



Converse of the Eilers-Horst Theorem 611 

a un ique  pos i t ive  symmet r i c  b i l inea r  form t with a dense  d o m a i n  such tha t  

m ( M ) = {  t r t o M  iff t o M e T r ( H )  
oo otherwise  (3) 

Since (3) genera l izes  the fo rmu la  (1), any  measure  m for which there  is a 
posi t ive  symmet r i c  b i l inea r  form t with a dense  d o m a i n  such that  (3) holds  
is said to be a G l e a s o n  measure .  

Theorem 2. Any  o--finite measure  m on ~ ( H ) ,  re(H) = oe, d im H ~ 2, 
is a G l e a s o n  measure  if[ the  d imens ion  o f  H is a n o n m e a s u r a b i e  card ina l .  

Proof. I f  is ev ident  tha t  any  ca rd ina l  I is n o n m e a s u r a b l e  iff there  is 
no o--finite measure  v on 2 r such that  v ( T ) = o e ,  v ( { t } ) = 0  for  any  t c  T 
and  card  T = L 

Suppose  that  any  o--finite measure  on ~ ( H )  is a G l e a s o n  one and  let  
the  d imens ion  o f  H not  be a n o n m e a s u r a b l e  card ina l .  Ana logous  as in the  
p r o o f  of  Theo rem 1, we define a m a p  m by  (2), where  now ~, is a o--finite 
measure  on 2 r with u (T)  = 0o and  vanish ing  at any  one -po in t  subset  o f  T. 
This m is a o--finite measure  and,  due  to the  a s sumpt ion ,  it is a G l e a s o n  one.  

F r o m  Dvure~enski j  (1986) it fol lows that  any  o--finite measure  on an 
a rb i t ra ry  quan tum logic  5~(H),  d im H ~ 2, is a G l e a s o n  one itt it is to ta l ly  
addi t ive .  This gives the con t rad ic t ion .  

The converse  imp l i ca t ion  fol lows f rom Theorem 6 o f  Dvure~enski j  
(1986). []  

F ina l ly  we note  an in teres t ing fact  which  has a connec t ion  with non-  
measu rab l e  cardinals .  I t  is known,  due  to Dvure~enski j  (1987), that  there  
are a Hi lbe r t  space  H o f  infinite n o n m e a s u r a b l e  ca rd ina l i ty  and  a posi t ive  
symmet r i c  b i l inea r  form t with a dense  d o m a i n  such that  t de te rmines  via 
(3) a G l e a s o n  measure  m with m(H)  = 0o and  which  is not  n-finite for  any  
ca rd ina l  n. 
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