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Converse of the Eilers—Horst Theorem

Anatolij Dvureéenskij'

Received March 2, 1987

We generalize the theorem of Eilers and Horst, showing that any finite as well
as any o-finite measure on a quantum logic of all closed subspaces of a Hilbert
space H of dimension # 2 is a Gleason one iff the dimension of H is a nonmeasur-
able cardinal.

1. INTRODUCTION

One of the most important examples of quantum logic is a system
Z(H) of all closed subspaces of a (not necessarily separable) real or complex
Hilbert space H. A measure on £(H) is a map m: £(H )~ [0, o] such that
(1) m(0)=0; 2Q)m(P’_, M,)=Y._, m(M,) whenever M, L M,, forn # m.
The famous theorem of Gleason (1957) says that any finite measure m on
a separable Hilbert space H, dim H # 2, is in a one-to-one correspondence
with a positive Hermitian operator T on H of finite trace via

m(M)=tr(TPM), Me %(H) (1)

where P™ is the orthoprojector of H onto M.

Eilers and Horst (1975) proved that the assumption of separability is
superfluous when the dimension of the Hilbert space is nonmeasurable
cardinal [see also Drisch (1979)]. Recall that, according to Ulam (1930),
the cardinal I is nonmeasurable if there is no probability measure » on the
power set 2 of a set A whose cardinal is I such that v({a}) =0 forany a € A.

In the present note we give a new characterization of nonmeasurable
cardinals via Gleason measures.

2. EILERS-HORST THEOREM

Let n be a cardinal. We say that a measure m is (1) n-finite if there is
a system {M,:te T} of mutually orthogonal subspaces of H such that
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H=@,.+ M,,card T=n,and m(M,) <ooforany te T; (2) o-finite if n = %y,
(3) totally additive if for any system of mutally orthogonal subspaces,
{N:ae A}, m(@aca No) =Y 4 m(N,); (4) a finite Gleason measure if it
is expressible via (1).

Theorem 1 (Eilers and Horst). Any finite measure m on £(H ), dim H #
2, is a finite Gleason measure iff the dimension of H is a nonmeasurable
cardinal.

Proof. Assume that any finite measure on £(H) is expressible via (1).
We claim to show that the dimension of H is a nonmeasurable cardinal.
Suppose the converse. Let {e,: t € T} be an orthonormal basis in H. Choose
a probability measure » on 27 vanishing at any one-point subset of T.

A map m on #P(H) defined by

m<M>=J IPYe P dv(r),  Me 2(H) )

is a finite measure on £(H) with m(H)=1 and m(P,)=0 for every te T,
where by P, we mean an one-dimensional subspace of H spanned over a
nonzero vector f € H.

Maeda (1980) proved that any finite measure on £(H) of an arbitrary
Hilbert space H, dim H # 2, is expressible via (1) iff it is totally additive.
Hence, a measure m defined by (2) is totally additive. Consequently,

1= m(H) = m(@te?‘ Pe,)=ZteT m(Pet) =0

where is a contradiction. Therefore, the dimension of H is a nonmeasurable
cardinal.

The converse implication has been proved by Eilers and Horst (1975)
[see also Drisch (1979)]. A

In the following result we generalize Theorem 1 to o-finite measures
attaining infinite values. For this reason we need further notations. Let ¢
be a symmetric bilinear form with a dense domain D(t), that is: (1) D(#)
is a linear submanifold; (2) t: D(t)x D(t)> C (C is the field of scalars)
such that ¢ is linear in the first argument and antilinear in the second one;
(3) t(ax, By)=aBt(x, y) for all x,ye D(¢) and all o, Be C; (4) t(x,y)=
t(y, x) for all x, ye D(t). Let M e $(H) and let M < D(t). Then by te M
we mean a symmetric bilinear form defined by te M(x, y) = t(P™x, PMy),
x, ye H. If toM is induced by a trace operator 7, such that te M(x, y)=
(Tx, v}, x, y € H, then we say to M € Tr(H) and we put tr te M =tr T, where
Tr(H) is the set of all trace operators in H. A bilinear form ¢ is positive if
t(x,x)=0 for any xe D(t).

Lugovaja and Sherstnev (1980) proved that for any o-finite measure
mon $(H), m(H) =00, of a Hilbert space H with dim H = N,, there exists



Converse of the Eilers~Horst Theorem 611

a unique positive symmetric bilinear form ¢ with a dense domain such that
trieM if teMeTr(H)
o0 otherwise

m(M) = { (3)
Since (3) generalizes the formula (1), any measure m for which there is a
positive symmetric bilinear form ¢ with a dense domain such that (3) holds
is said to be a Gleason measure.

Theorem 2. Any o-finite measure m on $£(H), m(H) =00, dim H # 2,
is a Gleason measure iff the dimension of H is a nonmeasurable cardinal.

Proof. If is evident that any cardinal I is nonmeasurable iff there is
no o-finite measure » on 27 such that v(T) =00, v({t})=0 for any te T
and card T= 1L

Suppose that any o-finite measure on £(H) is a2 Gleason one and let
the dimension of H not be a nonmeasurable cardinal. Analogous as in the
proof of Theorem 1, we define a map m by (2), where now v is a o-finite
measure on 27 with »(T) = and vanishing at any one-point subset of T.
This m is a o-finite measure and, due to the assumption, it is a Gleason one.

From Dvuretenskij (1986) it follows that any o-finite measure on an
arbitrary quantum logic £(H), dim H # 2, is a Gleason one iff it is totally
additive. This gives the contradiction.

The converse implication follows from Theorem 6 of Dvurecenskij
(1986). W

Finally we note an interesting fact which has a connection with non-
measurable cardinals. It is known, due to Dvureéenskij (1987), that there
are a Hilbert space H of infinite nonmeasurable cardinality and a positive
symmetric bilinear form ¢ with a dense domain such that ¢ determines via
(3) a Gleason measure m with m(H) =00 and which is not n-finite for any
cardinal n.
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