Converse of the Eilers–Horst Theorem

Anatolij Dvurečenskij¹

Received March 2, 1987

We generalize the theorem of Eilers and Horst, showing that any finite as well as any σ -finite measure on a quantum logic of all closed subspaces of a Hilbert space H of dimension $\neq 2$ is a Gleason one iff the dimension of H is a nonmeasurable cardinal.

1. INTRODUCTION

One of the most important examples of quantum logic is a system $\mathscr{L}(H)$ of all closed subspaces of a (not necessarily separable) real or complex Hilbert space H. A measure on $\mathscr{L}(H)$ is a map $m: \mathscr{L}(H) \rightarrow [0, \infty]$ such that (1) m(0) = 0; (2) $m(\bigoplus_{n=1}^{\infty} M_n) = \sum_{n=1}^{\infty} m(M_n)$ whenever $M_n \perp M_m$ for $n \neq m$. The famous theorem of Gleason (1957) says that any finite measure m on a separable Hilbert space H, dim $H \neq 2$, is in a one-to-one correspondence with a positive Hermitian operator T on H of finite trace via

$$m(M) = \operatorname{tr}(TP^{M}), \qquad M \in \mathcal{L}(H) \tag{1}$$

where P^M is the orthoprojector of H onto M.

Eilers and Horst (1975) proved that the assumption of separability is superfluous when the dimension of the Hilbert space is nonmeasurable cardinal [see also Drisch (1979)]. Recall that, according to Ulam (1930), the cardinal I is nonmeasurable if there is no probability measure ν on the power set 2^A of a set A whose cardinal is I such that $\nu(\{a\}) = 0$ for any $a \in A$.

In the present note we give a new characterization of nonmeasurable cardinals via Gleason measures.

2. EILERS-HORST THEOREM

Let n be a cardinal. We say that a measure m is (1) n-finite if there is a system $\{M_t: t \in T\}$ of mutually orthogonal subspaces of H such that

¹Mathematical Institute, Slovak Academy of Sciences, 814 73 Bratislava, Czechoslovakia.

609

 $H = \bigoplus_{t \in T} M_t$, card $T = \mathbf{n}$, and $m(M_t) < \infty$ for any $t \in T$; (2) σ -finite if $\mathbf{n} = \varkappa_0$; (3) totally additive if for any system of mutally orthogonal subspaces, $\{N_a: a \in A\}, m(\bigoplus_{a \in A} N_a) = \sum_{a \in A} m(N_a)$; (4) a finite Gleason measure if it is expressible via (1).

Theorem 1 (Eilers and Horst). Any finite measure m on $\mathcal{L}(H)$, dim $H \neq 2$, is a finite Gleason measure iff the dimension of H is a nonmeasurable cardinal.

Proof. Assume that any finite measure on $\mathcal{L}(H)$ is expressible via (1). We claim to show that the dimension of H is a nonmeasurable cardinal. Suppose the converse. Let $\{e_t: t \in T\}$ be an orthonormal basis in H. Choose a probability measure ν on 2^T vanishing at any one-point subset of T.

A map m on $\mathcal{L}(H)$ defined by

$$m(M) = \int_{T} \|P^{M}e_{t}\|^{2} d\nu(t), \qquad M \in \mathscr{L}(H)$$
(2)

is a finite measure on $\mathcal{L}(H)$ with m(H) = 1 and $m(P_{e_i}) = 0$ for every $t \in T$, where by P_f we mean an one-dimensional subspace of H spanned over a nonzero vector $f \in H$.

Maeda (1980) proved that any finite measure on $\mathcal{L}(H)$ of an arbitrary Hilbert space H, dim $H \neq 2$, is expressible via (1) iff it is totally additive. Hence, a measure m defined by (2) is totally additive. Consequently,

$$1 = m(H) = m(\bigoplus_{t \in T} P_{e_t}) = \sum_{t \in T} m(P_{e_t}) = 0$$

where is a contradiction. Therefore, the dimension of H is a nonmeasurable cardinal.

The converse implication has been proved by Eilers and Horst (1975) [see also Drisch (1979)]. ■

In the following result we generalize Theorem 1 to σ -finite measures attaining infinite values. For this reason we need further notations. Let t be a symmetric bilinear form with a dense domain D(t), that is: (1) D(t)is a linear submanifold; (2) t: $D(t) \times D(t) \to C$ (C is the field of scalars) such that t is linear in the first argument and antilinear in the second one; (3) $t(\alpha x, \beta y) = \alpha \beta t(x, y)$ for all $x, y \in D(t)$ and all $\alpha, \beta \in C$; (4) t(x, y) = t(y, x) for all $x, y \in D(t)$. Let $M \in \mathcal{L}(H)$ and let $M \subset D(t)$. Then by $t \circ M$ we mean a symmetric bilinear form defined by $t \circ M(x, y) = t(P^M x, P^M y)$, $x, y \in H$. If $t \circ M$ is induced by a trace operator T, such that $t \circ M(x, y) = (Tx, y), x, y \in H$, then we say $t \circ M \in Tr(H)$ and we put tr $t \circ M = tr T$, where Tr(H) is the set of all trace operators in H. A bilinear form t is positive if $t(x, x) \ge 0$ for any $x \in D(t)$.

Lugovaja and Sherstnev (1980) proved that for any σ -finite measure m on $\mathcal{L}(H)$, $m(H) = \infty$, of a Hilbert space H with dim $H = \aleph_0$, there exists

a unique positive symmetric bilinear form t with a dense domain such that

$$m(M) = \begin{cases} \operatorname{tr} t \circ M & \text{iff} \quad t \circ M \in \operatorname{Tr}(H) \\ \infty & \text{otherwise} \end{cases}$$
(3)

Since (3) generalizes the formula (1), any measure m for which there is a positive symmetric bilinear form t with a dense domain such that (3) holds is said to be a Gleason measure.

Theorem 2. Any σ -finite measure m on $\mathcal{L}(H)$, $m(H) = \infty$, dim $H \neq 2$, is a Gleason measure iff the dimension of H is a nonmeasurable cardinal.

Proof. If is evident that any cardinal I is nonmeasurable iff there is no σ -finite measure ν on 2^T such that $\nu(T) = \infty$, $\nu(\{t\}) = 0$ for any $t \in T$ and card T = I.

Suppose that any σ -finite measure on $\mathscr{L}(H)$ is a Gleason one and let the dimension of H not be a nonmeasurable cardinal. Analogous as in the proof of Theorem 1, we define a map m by (2), where now ν is a σ -finite measure on 2^T with $\nu(T) = \infty$ and vanishing at any one-point subset of T. This m is a σ -finite measure and, due to the assumption, it is a Gleason one.

From Dvurečenskij (1986) it follows that any σ -finite measure on an arbitrary quantum logic $\mathcal{L}(H)$, dim $H \neq 2$, is a Gleason one iff it is totally additive. This gives the contradiction.

The converse implication follows from Theorem 6 of Dvurečenskij (1986). ■

Finally we note an interesting fact which has a connection with nonmeasurable cardinals. It is known, due to Dvurečenskij (1987), that there are a Hilbert space H of infinite nonmeasurable cardinality and a positive symmetric bilinear form t with a dense domain such that t determines via (3) a Gleason measure m with $m(H) = \infty$ and which is not **n**-finite for any cardinal **n**.

ACKNOWLEDGMENT

I am especially indebted to prof. D. H. Fremlin from the University of Essex for his valuable comments concerning formula (2).

REFERENCES

Drisch, T. (1979). Generalization of Gleason's theorem, International Journal of Theoretical Physics, 18, 239-243.

Dvurečenskij, A. (1986). Generalization of Maeda's theorem, International Journal of Theoretical Physics, 25, 1117-1124.

Dvurečenskij, A. (1987). Note on construction of unbounded measures on a nonseparable Hilbert space quantum logic, Submitted for publication.

- Eilers, M., and Horst, E. (1975). The theorem of Gleason for nonseparable Hilbert space, International Journal of Theoretical Physics, 13, 419-424.
- Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert space, Journal of Mathematics and Mechanics, 6, 885-893.
- Lugovaja, G. D., and Sherstnev, A. N. (1980). On the Gleason theorem for unbounded measures, *Izvestija vuzov-Matematika*, **1980**(12), 30-32 (in Russian).
- Maeda, S. (1980). Lattice Theory and Quantum Logic, Mahishoten, Tokyo (in Japanese).
- Ulam, S. (1930). Zur Masstheorie in der allgemeinen Mengelehre, Fundamenta Mathematica 16, 140-150.